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umimary

- his' thesis was born on the boundary of the theory of control and a particular
PPl.lcation, namely a smart structural system. More specifically, the primary
motivation of this study comes from the following questions. Is it really possible
to use smart structural system in a practical situation? What is the problem
from the view point of the theory of control? In this work, it is assumed that one
of the most important problems is that of robustness of the controlled system,
‘and it is supposed that one of the solution would be to estimate uncertainty and
“disturbance without a priori knowledge in order to cancel their effect on system
behaviour. This study provides a method, including its theoretical foundation,
to estimate and cancel out any bounded disturbance and/or uncertainty.

One of the most important problems in control systems is the robustness
of the controlled system. It is known that almost all physical systems, such as
mechanical or structural system, contain some form of uncertainty. Even smart
structural systems cannot escape from this problem. Such systems consist of
host materials, sensing and actuating layers, which are attached or embedded
to the host materials. The modelling of smart structural systems gives rise to
infinite dimensional models if it were modelled by ordinary differential equations.
In practice, however, a model is obtained by using the Finite Element Method,
and, hence, a high order finite dimensional model is obtained. Such approximate

models will inevitably generate uncertainty, representing unmodelled dynamics.
In addition, such system models would suffer from parametric uncertainty and
external disturbances. Thus, this type of system model would include many
types of uncertainties.

In past decades, much research has been done using a deterministic approach
for the robust control problem. The majority of this work assumes a known up-
per bound to uncertainty and disturbance, and robust controllers are determined
deterministically. However, for smart structural systems, it may be difficult, or
even impossible, to obtain such a priori knowledge of any disturbance. If this
is the case, what can be said about the robustness of controlled system without
a priori knowledge of any disturbance? Part of the answer to this question can

be found in this thesis.

This thesis considers a linear uncertain system in which the uncertainty
and/or disturbance is known to be bounded, but its bound is unknown. The
main contribution is that an adaptive feedback control law is designed to esti-
mate the bounded disturbance. The design of the adaptive control algorithm is
novel and the adaptive control algorithm is easy to implement. This information
can then be used to cancel the effect of the disturbance in the system. This has
the advantage that, if further design objectives are to be realized, the controls

can be designed based on the information from the known nominal model only




ind not. on the model with uncertainty,

- This thesis is organized ag follows, In Chapter 1, firstly, concept of stability
P systems and deterministic approach of robust control are recalled. At the end
Of that chapter, it is implied that there is some limitation of that approach of
obust control, In Chapter 2, motivated by the limitation discussed at Chapter
1, the method of disturbance estimation is introduced. Firstly, the statement
of the problem is provided, It is followed by some preliminary works which are
equired for analysis, Then, for each class of systems, an adaptive algorithm,
mmas, theorem, and simulation examples are provided. The class of systems
examined are second-order single-input linear systems, n*"order single-input

car systems, and multi-input linear systems. In Chapter 3, based on the works
of Chapter 2, some applications of the method of disturbance estimation are
presented. In Section 3.2, an adaptive algorithm which guarantees robustness of
A controlled system is presented. In Section 3.3, treatment of input uncgrtamty
and unmodelled dynamics is discussed. In the following section, Section 3.4,
it is shown that under appropriate assumptions, it is possible to treat residual
disturbance by the method proposed. In Section 3.5, the method is extended so
that the method can be used only by outputs of a system. At last, in Secti‘m 3.6,
it is demonstrated that parameter variations can be extracted from estimated

disturbances. In Chapter 4, conclusion remarks and suggestions for future works
‘are provided.

ii
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Chapter 1

Deterministic approach of
robust control and

Ly apunov stabilization

1.1 Introduction

jl‘he aim of this chapter is to review the deterministic approach for robust control
in the time domain and to discuss limitations of this approach.

For robust control of imperfectly known linear systems, much research has
been done on the case when either parametric uncertainty, or uncertainty due
to external disturbance is represented as a disturbance whose norm is assumed
to.be bounded by some known function ([3], [9], [16], [23], [24], and [37]). Under
this assumption, often the resulting controller has a simple structure and the
resulting closed-loop system is robust with respect to the uncertainty when using
this simple controller. However, in some applications, this bounding information
may be difficult, or impossible to obtain.

The outline of this chapter is as follows. Firstly, some mathematical ter-

minology is defined and then, stability of a linear system and the concept of

a Lyapunov function is recalled. Next, it is shown how, under appropriate as-

sumptions, it is possible to stabilize a linear system with parametric uncertainty,
and external disturbances using a deterministic approach. Finally, limitations
of this deterministic approach for robust control are discussed. It is concluded
that another deterministic method is required if the uncertainty or disturbance
is bounded, but its bounding function is unknown.

1.2 Mathematical preliminaries

In this section, some terminologies, which are required for later lemmas and
theorems, are defined.

Definition 1 R denotes the set of real numbers.

Definition 2 R* denotes the interval (0,00).
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2 Vv
(t,::) 2 a(“z”) Va € R

Note that  ;
18 said :
Th.Somet:,imes & pos:gvzed‘;gga:twe definite if —V is positive definite.
1S Mmotivates the next deﬁnnilttiz function is required to be bounded as t varies.
Definitio g
n 22 4 5
Continuous function v Ry x R™ — R} is said to be decres-

cent if the ]
Te exists q Junction B € K such that

V(t,z) < B(||al) Vo € B”, £ > 0

iew igs
of Definition 22, V(t, z) tends to zero uniformly with respect

Remark 2 |y,
to t as |z|| - o

Some L, i
Speaking, g:sﬁz"[“’ VaStabxhty theorems now follow (Theorem 5.16 of [29]). Loosely
function with co“{inpunov thefi'l‘ems state that if V(t,z) is a positive definite
then one can conclu(juous P_a..rtlal derivatives and, along solutions, V (t,z) < 0,
V' is taken a] e Sta‘l_)‘hty of the equilibrium point. The time derivative of
ong trajectories of (1.3.1), that is

V(t, z) = M

dt
oV (t, ,
= g: i avéi 2) A(t)z(t).

1 U the ezzsts a ) del:f escen y posi ive d ﬁnite funct. . X
- ! il l 1 . -

H’It‘:)eorein 2 If there ezists a C?, decrescent positive definite function V : R x
- IRO sych that, along solutions to (1.8.1), V (t,z) is negative definite, then
z = 0 is uniformly asymptotically stable.

Remark 3 A function V that satisfies Theorem 1 or 2 is known as a Lyapunov
function.

As it can be seen in the above theorems, the major advantage of Lyapunov-
based stability analysis is its simplicity and its abstraction. However, its main
disadvantage is that the theorems do not say how to find the Lyapunov functions.

With respect to advantages, since the only requirement for the stability of
the system is to satisfy negative definiteness of the time derivative of a candi-
date Lyapunov function, it is easy to evaluate stability of an equilibrium point
of a system. In fact, both the deterministic approach of robust control of linear
uncertain systems, introduced in the next section and adaptive/robust control
of linear uncertain systems, developed by this project, are based on the con-
struction of a candidate Lyapunov function.

With respect to the main disadvantage, it is requir_ed to construct can'didate
Lyapunov functions for each class of systems exar.mned. If‘ genera_l, it may
be difficult to construct candidate Lyapunov fl_mctlon_s for. time-varying lmea..r
systems and nonlinear systems. Howeve.r, for h.near time-invariant systems, it
is more straightforward, since, a quadratic candidate Lyapunov function can be
used. For instance, consider the following linear time-invariant system:

i(t) = Az(t), z(t) € R". (1.3.2)

1






and substityy
ing (1.4.2), (1.4.3), and (L) in (1.4.1) gives

) = Aa(t) + Bp(t) + u(ey) (1.4.5)

Therefore, jf
v 1 matchin
& conditions hold, then the offoct, of nny uncertainty, in-

CIUdinE Param
oetric uncery
:fﬂ regarded ag gy ext:?;:‘:ll“:i{’ nonlinear effect, and external disturbance can
uenced by the controlloy Sturbance to the wystem which can be directly

. D€ may agk :
climinated?’, Overut]l(:elllueguon ‘how can the effect of such a disturbance be
problem (see for exam llm' decades, many studion have boen undortaken on this
In this section, » deterp © [3), (9), (1), (23], [24], [37), and references therein.).
used by Gutman Lolt,nl,mnlmc approach for robust, control of systems, initially
is recalled. The o ] ann, and Corless and Leitmann ([24), (23], (9], and [16]),

utline of this approach is as follows,

1. It is assu ow
me
Wtmn k(;::) :’l;&: an upper bound of the disturbance p(t) is known, i.e.
unction p(t) which satisfies ||p(t)|| < p(t).

2. Based on th
Ear e k.nowledgn of p(t), a control input is used to force a trajectory
ystem into a certain subspace.

3. If the nomi
The syst(;mmal System is stable, then it can be shown that a trajectory of
m converges to the equilibrium point.

The simpl SO
deta.ils):p est realization of such a control input is given by (see (23] for more

U(t) = —M
[|BtPxz(t)||

W?ere £ € R™X™ is a positive definite symmetric constant matrix. In (1.4.6),
BPa(t) is used to define the subspace S = {z € R" : B'Pz = 0}. Also, the
sign (.)f the term B!Pz(t) is switched around the subspace S. Moreover, the
magnitude of this control input is always greater than or equal to the magnitude
of the disturbance. Thus, using the controller, given by (1.4.6), a trajectory is
forced into the subspace S and eventually converges to the equilibrium. In fact,
it is possible to show this using a Lyapunov-based analysis. Define a candidate

Lyapunov function by

p(t), (1.4.6)

V(z) := ' Pz,
where P € R" is a positive definite symmetric constant matrix. Taking the time
derivative of V along solutions to (1.4.5) gives
V(z(t)) = z'(t)(A'P + PA)x(t) + 2a* (t) PB(u(t) + p(t)).
It is supposed that there exists positive definite symmetric matrix @ such that

AtP + PA = —Q so that
V(2(t) = —2!(t)Qu(t) + 2(B' P (1)) (u(t) + p(t)) (1.4.7)

In view of (1.4.6) and (1.4.7), it follows that

t
i (o(t) = ~=*(0Qa(0) + ABPol0) (Tt + 2()

< —z'(t)Qu(t)
< —omin(@)lle@®II*







Chapter 2

Disturbance esfimation and
cancellation -the basis-

2.1 Introduction

The principal aim of this chapter is to describe and present a new approach to
robust/adaptive control of imperfectly known linear systems.

As discussed in the previous chapter, many robust control problems are
studied using a deterministic approach for robust control, which assumes prior
knowledge of an uncertainty /disturbance bound or bounding function is known.

In practice, however, it is supposed that such a priori knowledge of the uncer-
tainty and/or disturbance may be difficult or almost impossible to obtain for
the specific application.

Although there have been numerous studies in the area of robust control,
there are very few studies that considers the problem of estimating and can-
celling uncertainty and/or disturbance without a priori knowledge of uncer-
tainty and/or disturbance. Those studies can be classified into three classes.
One class consists of methods that use inverse dynamics of the nominal model
to estimate the disturbance, see [19] for example. A second class of methods
utilise observers with Lyapunov min-max type controllers, for example see [35].

The final class involves those methods that use high gain disturbance observers
as studied in [32]. In the traditional disturbance observer (see [19], [13], and [25]
for example), it is shown that the disturbance and uncertainty can be estimated
using inverse dynamics of the nominal system. In the study on disturbance ob-
servers with Lyapunov min-max type controllers, ([36], [38] and [35]), it is shown
that the uncertainty/disturbance can be estimated using an observer-like system
with Lyapunov min-max type controllers, and an adaptive law. In the studies
[36] and [38], it is shown that, with a priori knowledge of the bound on the
uncertainty/disturbance, it is possible to estimate the uncertainty /disturbance
using a non-adaptive control law. In [35], using an adaptive control law, it
is shown that the uncertainty/disturbance can be estimated without a priori
knowledge of the disturbance/uncertainty. In the study of the high-gain dis-
turbance observers [32], the disturbance is treated as one of the states of the

observer, and it was shown that, using a constant gain high gain observer, the
disturbance can be estimated.




In the context of adaptive control, there are some studies which try to stabi-
lize unknown systems using a control input, which is produced by an observer-
like system (see [2), [5), and (18], for example.). However, they only consider
parametric uncertainty for which all the parameters of the system are unknown.
Moreover, those methods do not provide an estimation of the disturbance.

In addition, there are some studies that consider adaptive version of Lya-
punov min-max type robust controllers, which do not require a priori knowledge
of disturbance (see [8], [17), and (27] for example).

For this investigation, an on-line uncertainty /disturbance estimation and
cancellation method is proposed. The approach is based on the inverse problem
of tracking and it does not require any a priori knowledge on the bounds of
any disturbances. The basic idea for estimating the disturbances is to track the
State of the real system, to be controlled, by using the output of an ob =
like system. The real system is assumed to be modelled as an additive unknown
perturbation to a known linear system, known as the nominal model. The
observer-like system is designed to be a known linear system with the same
System matrices as the nominal system of the real system. Since both systems
have the same system matrices, if it were possible to track the real system

by the observer-like system, then the control input, for tracking, will produce
almost exactly the same signal as the disturbance. In addition to this basic
method, a feedforward filter is introduced in order to estimate and cancel out
the disturbance in the closed-loop system. The resulting robust control scheme
and the controller itself are very simple and hence, it is easy to implement in
practice.

Although the method developed in this study and the disturbance observers,
described above, share the same basic philosophy, they use different methods
to that used in this investigation. Compared with the Lyapunov min-max
controllers-based disturbance observer, the structure of the controller to the
observer-like system is different. For this investigation, state feedback is used
and for the Lyapunov min-max type controllers based observer, a Lyapunov
min-max type controller is used. Compared with a high-gain disturbance ob-
server, the way to express disturbance and adaptive law is different. For the
high-gain disturbance observer, the disturbance is expressed as a state of the
observer and, also, the gain is a constant and hence, non-adaptive. For this
investigation, the disturbance is estimated using a control input to an observer-
like system and the gain of the control input to the observer-like system is

determined by a specified adaptation law.

The outline of this chapter is as follows. Firstly, a statement of the problem is
presented and, in this section, a detailed explanation of disturbance estimation
for both the open-loop system and the closed-loop system are introduced. It is
shown that inverse tracking can be achieved for the open-loop system, but for
the closed-loop system, a feedforward filter is required to estimate and cancel
out the disturbance. In the next section, some preliminary works are presented.
Then, in the following sections, for some classes of systems, algorithms, lemmas,
and theorems for the estimation and cancellation of the disturbance, without any
a priori knowledge, are presented. The classes of systems examined are second
order single-input system, n'Morder single-input system, and multi-input system.
Also, for each class of system, simulation examples are shown to demonstrate

the method developed.
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Thus, treati
equivalent ?:sa: (:z,: :::,(t)‘ aS a new state variable, the formulation (2.3.8) is
methods of [3 crver-like System, which is used in disturbance estimation
gl o (351, and [35]
tion withufn ’obg:l:vrepfesentations are identical, for this study the representa?,-
used even tho h i e_r~hke System and feedforward filter, defined previously, is
U8R 1t is not standard. The reasons for this are as follows.

i The origi . C
Systen:limal motivation of this study comes from the idea ‘tracking a real
result in Z'han o!)ser‘fer-like system with the same system matrix should

€ estimation of the uncertainty /disturbance’.

2. Usi X
it c:g :)he observer-like system with the feedforward filter representation,
iy e clearly understood that the observer-like system tracks the real

3. 2 ‘
If: VZ f‘?‘edforward filter is not utilised, then the observer-like system will
'%h r1se to the system (t) = Az(t), which is independent of any input.

US, 1t is not obvious that x(t) will track r(t).

T : :
feil;;efor e, although the technique is not standard, an observer-like system with
orward filter representation is used for this study.

2.4 Second order single-input system

In Fhis S:ection, an adaptive algorithm, theorems, and simulation example for the
estimation and cancellation of uncertainty /disturbance are presented. Firstly,
an adaptive algorithm is described. Next, associated lemmas are constructed
which are required to prove the main result. Then the main theorem is given,
and, finally, a simulation example is included, which shows the performance of

the method proposed.

2.4.1 Adaptive algorithm

In this subsection, an adaptive algorithm is presented. The main idea of this
adaptive algorithm is that by decreasing the (real, negative) eigenvalues of
A+ BK(t), the norm of &(t), which is the transformed error state, will converge
to within any specified interval (0, ¢.) in the presence of bounded disturbances.
Note that as a result of the adaptive law, the error system is a time-varying sys-
tem. The adaptive algorithm is based on evaluation of a Lyapunov-like function.
In general, for a time-varying system, constructing a candidate Lyapunov func-
tion can be difficult. However, it is shown that in the transformed coordinates,
it is always possible to construct a Lyapunov-li.ke functif)n and, hence, the adap-
tive algorithm is realizable. Using this adaptive algorithm and Lyapunov-like
function, the norm of the transformed error state converges to a prescribed set,
and, hence, the uncertainty/disturbance can be estimated. Initially, a second

order single-input system is considered.

Algorithm 1 The eigenvalues of A+ BK(t), Ai(t), are determined as follows.
Suppose €., 0, and Kz are prescribed positive constants, which are determa
€ b

by control designer. Define V(t) = |le)]*.
16
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Figure 2.4.1: Open-loop response of the state r(t).

28
































































































































































tr acking prob Tty of the controlleq

; lem System for the
In this subsection, it is she

method, a contro] in
Put b ;i

put of the systen, ¢ € designed fo ¢ <
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tion/ cancellation method ithl; 1t is shown that using the disturbance estima-
b

for the nomina] System, th Vo tr%_lcking controller is designed appropriately
» “1€N tracking the desireq trajectory can be done ro-

bustly in an appropri
A priate g : s .
is included. ense. Finally, 5 Numerical simulation and discussion

ntrollers and tracking controllers

;nettlilc;fj f:?::gf:::(i iit :i shown that the disturbance estimation/cancellation
. ; 1 the previous cha, ter :
implementation of the tracking contro] iI;put(_:an o

The control input to the system (3.2.9) is defined as follows:
u(t) = ur(t) + u(t),

where u, (?) is the control input for cancellation of the uncertainty /disturbance
and u(t) is the control input for tracking of the prescribed trajectory. Thus, it
follows that

7(t) = Ar(t) + B(u,(t) + w(t) + p(t)). (3.2.9)
Hence, the feedforward filter (2.2.8) can be expressed as

Tp(t) = Azs(t) + Bu(t)
= Azs(t) + Bur(t) + u(2)),

and so the modified reference signal 7(t) is generated by

7(t) = A7(t) + Bp(t). (3.2.10)
Equation (3.2.10) holds regardless of whether a tracking controller is used or
not. Also, observer-like system has the structure:

#(t) = Ax(t) + Bu(t),

i -like system, which is determined
i(#) is the control input to the observer W ‘
wdherf. u(lt) lnsrhis system is, of course, not affected by the existence of the input
or wle(-y' Therefore, regardless of the existence of the tra‘ckmg controller,
fﬁr fir;?g;ni'f the disturl;ance estimation/cancellation method is not affected.
e
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(see [31] for detailst)l-le

Simulation results

The open-loop response of ¢

to 3.24. In Figure 3.9 . he stateg o

-1, the dagheq 1if the system are shown in Figure 3.2.1

and the solid line 1€ represent, i

line representg therreg::zms !‘-he state ry (). Also, Ei;nt };‘eigrl‘:::rgng sﬁ?ﬂiﬁ&
In these figures, it is clog thag - the solid line represents the state ra(?)
uncertainty, tracking the refere Gsiesiotithe e Of disturbanceliand

The closed-log nice signals are not achieved.

3.2.5 to 3.2.10. Tl?er::ti(r):xslzs of the states of the System are illustrated in Figure
are shown in Figure 3.2.5 ’I?hSIgnal R, (t.) and the closed-loop response of 7y (t)
the solid line represe ts h ® dashed line reépresents the reference signal and
state converges to th e state ry(t). In this figure, it is observed that this

£ ; Beeloe refere.nce Signal. The behaviour of the state r1(t) and the
relerence signal at a later time are shown in Figure 3.2.9. In this figure, it is
.observed. that ﬂtl}Ough this state is not exactly the same as the reference s;gna.l,
_ltS error is s.ma.ll., 1.e. 1ts order is 104 with respect to the reference signal. As it
is obser ve(? in Figure 3.2.6, similar thing can be said for the state r2(t) and the
reference signal R, (t). Therefore, the figures confirm that using the disturbance
estimation/cancellation method, the tracking controller, designed with respect

uncertainty.
The actual and estimated disturbances are shown in Figures 3.2.11 to 3.2.14.
The actual disturbance, d, (), and its estimate, p; (t), are shown in Figure 3.2.11.
The solid line represents actual disturbance and the dashed line represents esti-
mated disturbance. In this figure, it is observed that the estimated disturbance
converges to the actual one fairly rapidly. The behaviour of these disturbances
at some later time are shown in Figure 3.2.13. In this figure, it is observed
that although there is error between the actual and the estimated disturbances,
the error is small. In Figure 3.2.12 and 3.2.14, similar behaviour is observed
for the set of the actual disturbance da(t) and the estima..ted disturbance pz.(t).
The figures confirm that the disturbances have been estimated to the desired
acct;‘r:ecyl-lis tory of the eigenvalues of the error system (2.3.2) and the gains of
the observer-like system (2.2.4) are shown in Fxgure.s 3.2.15, 3.2.16, and 3.2.17'.
hese figures. it is observed that these values are increased or decreaseq until
In these figures, in values and then they remain at those values. The history
reach certallllik function is shown in Figure 3.2.18. In this figure, it is
e f this function decrease very rapidly. The: history c?f
is shown in Figure 3.2.19. In this figure, it

they
of the Lyapunov-
observed that the value of thi
this function, at some later time,
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Figure 3.3.10: History of the L
interval.

yapunov-like function V(t) at some later time
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Figure 3.5.13: Histories of the eigenvalues of the error system: A1(t) and Aa(t).
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.Fl guroIS.S.lG: History of the Lyapunov-like function V() for some later time
interval.
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